3.695 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^2} \, dx\)

Optimal. Leaf size=178 \[ -\frac {3 c d \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{5/2}}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}+\frac {3 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g^2 \sqrt {d+e x}} \]

[Out]

-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)/(g*x+f)-3*c*d*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))*(-a*e*g+c*d*f)^(1/2)/g^(5/2)+3*c*d*(a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2)/g^2/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 178, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {862, 864, 874, 205} \[ -\frac {3 c d \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{5/2}}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}+\frac {3 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g^2 \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^2),x]

[Out]

(3*c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g^2*Sqrt[d + e*x]) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(3/2)/(g*(d + e*x)^(3/2)*(f + g*x)) - (3*c*d*Sqrt[c*d*f - a*e*g]*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e
^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(5/2)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 862

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(n + 1)), x] + Dist[(c*m)/(e*g*(n + 1)), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 864

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(m - n - 1)), x] - Dist[(m*(c*e*f + c*d*g - b*e*g
))/(e^2*g*(m - n - 1)), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c,
 d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ
[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2,
 0]) && RationalQ[n]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^2} \, dx &=-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}+\frac {(3 c d) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx}{2 g}\\ &=\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {(3 c d (c d f-a e g)) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 g^2}\\ &=\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {\left (3 c d e^2 (c d f-a e g)\right ) \operatorname {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{g^2}\\ &=\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {3 c d \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 75, normalized size = 0.42 \[ \frac {2 c d ((d+e x) (a e+c d x))^{5/2} \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};\frac {g (a e+c d x)}{a e g-c d f}\right )}{5 (d+e x)^{5/2} (c d f-a e g)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^2),x]

[Out]

(2*c*d*((a*e + c*d*x)*(d + e*x))^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])/(
5*(c*d*f - a*e*g)^2*(d + e*x)^(5/2))

________________________________________________________________________________________

fricas [A]  time = 1.01, size = 444, normalized size = 2.49 \[ \left [\frac {3 \, {\left (c d e g x^{2} + c d^{2} f + {\left (c d e f + c d^{2} g\right )} x\right )} \sqrt {-\frac {c d f - a e g}{g}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} g \sqrt {-\frac {c d f - a e g}{g}} - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d g x + 3 \, c d f - a e g\right )} \sqrt {e x + d}}{2 \, {\left (e g^{3} x^{2} + d f g^{2} + {\left (e f g^{2} + d g^{3}\right )} x\right )}}, \frac {3 \, {\left (c d e g x^{2} + c d^{2} f + {\left (c d e f + c d^{2} g\right )} x\right )} \sqrt {\frac {c d f - a e g}{g}} \arctan \left (\frac {\sqrt {e x + d} \sqrt {\frac {c d f - a e g}{g}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\right ) + \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d g x + 3 \, c d f - a e g\right )} \sqrt {e x + d}}{e g^{3} x^{2} + d f g^{2} + {\left (e f g^{2} + d g^{3}\right )} x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x, algorithm="fricas")

[Out]

[1/2*(3*(c*d*e*g*x^2 + c*d^2*f + (c*d*e*f + c*d^2*g)*x)*sqrt(-(c*d*f - a*e*g)/g)*log(-(c*d*e*g*x^2 - c*d^2*f +
 2*a*d*e*g - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*g*sqrt(-(c*d*f - a*e*g)/g) - (c*d*e*f
 - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2
*c*d*g*x + 3*c*d*f - a*e*g)*sqrt(e*x + d))/(e*g^3*x^2 + d*f*g^2 + (e*f*g^2 + d*g^3)*x), (3*(c*d*e*g*x^2 + c*d^
2*f + (c*d*e*f + c*d^2*g)*x)*sqrt((c*d*f - a*e*g)/g)*arctan(sqrt(e*x + d)*sqrt((c*d*f - a*e*g)/g)/sqrt(c*d*e*x
^2 + a*d*e + (c*d^2 + a*e^2)*x)) + sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*g*x + 3*c*d*f - a*e*g)*s
qrt(e*x + d))/(e*g^3*x^2 + d*f*g^2 + (e*f*g^2 + d*g^3)*x)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.03, size = 306, normalized size = 1.72 \[ \frac {\sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (-3 a c d e \,g^{2} x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+3 c^{2} d^{2} f g x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )-3 a c d e f g \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+3 c^{2} d^{2} f^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+2 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c d g x -\sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a e g +3 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c d f \right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, \left (g x +f \right ) \sqrt {\left (a e g -c d f \right ) g}\, g^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x)

[Out]

(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(e*x+d)^(1/2)*(-3*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)
*x*a*c*d*e*g^2+3*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x*c^2*d^2*f*g-3*arctanh((c*d*x+a*e)^(1/2
)/((a*e*g-c*d*f)*g)^(1/2)*g)*a*c*d*e*f*g+3*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*c^2*d^2*f^2+2*
((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c*d*g*x-((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*e*g+3*((a*e*g-c*
d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c*d*f)/(c*d*x+a*e)^(1/2)/g^2/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}} {\left (g x + f\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*(g*x + f)^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^2\,{\left (d+e\,x\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^2*(d + e*x)^(3/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^2*(d + e*x)^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+f)**2,x)

[Out]

Timed out

________________________________________________________________________________________